

Welcome to Ludion’s documentation!

Ludion is the French word for “Cartesian Diver” a classic science
experiment demonstrating the principle of Archimedes’principle. It
consists of a diver trapped in a water bottle traveling down when a
pressure is applied at the top of the enclosure and back up when it is
released.

The movement of this diver portrays well the purpose of Ludion this
framework which goal is to spread valuable information back and forth
from HPC Resources to an easy to use web interface
hosted in the AWS Cloud and vice versa.

Although all technical information can be found on the current
website, the following [Article] might be of interest to understand
the context of this work as it captures the motivations of Ludion’s
development, its functional architecture, some detail of
implementation as well as 10 use cases partially deployed at KAUST
Supercomputing Laboratory.

[image: _images/Ludion.png]

User Documentation

	What is Ludion?
	Features

	Installation
	Requirements

	Distribution

	Installing Ludion

	Installing Ludion Centralized Services
	Prerequisites

	Deployment of the Dashboard in AWS cloud:

	Ludion’s API
	registerService

	getService

	updateService

	listServices

	setServiceTrigger

	Typical use case: spawning a Jupyter Notebook

	Article

	Towards an HPC Service Oriented Hybrid Cloud Architecture
Designed for Interactive Workflows, Samuel KORTAS & Moshin SHAIKH,
submitted in September 2020, available on request.

What is Ludion?

Developped by the KAUST Supercomputing Laboratory (KSL), Ludion is a
service-oriented hybrid architecture, well-adapted to launch, monitor
and steer interactive services spawned either on on-premise HPC
resources, on user laptop and workstation or in the Cloud. Based on
AWS serverless components, requiring no special priviledges to be
deployed, it consists in a catalog of services and a dashboard hosted
in the Cloud and a set of commands to install on the Resources to
cover. From a running job, a user can register and
publish his new service and any relevant data related on a centralized
dashboard.

Developed by the KAUST Supercomputing Laboratory,
Ludion is released as an Open Source Software under BSD Licence.
It is available at http://github.com/samkos/ludion

Features

Ludion allows a user to:

	“publish” his own service via a centralized web interface and API.
This service can be hosted either on-premise HPC, on his local
workstation or in the cloud.

	dynamically update any information judged of interest about
the published service

	make user-defined widget appear on the website in the view related
to a given service. When clicked-on or filled and submitted, these
widget trigger immediate action from the service hosted on
resource.

Installation

Requirements

Ludion does not require any super priviledge. It can be
installed by a regular user as long as he possess an AWS
account to install Ludion centralized services.

Distribution

Ludion is an open-source project distributed under the BSD
2-Clause “Simplified” License which means that many possibilities are
offered to the end user including the fact to embed Ludion in
one own software.

Its stable production branch is available via github at
https://github.com/samkos/ludion where its latest production and
development branch can be found

The most recently updated documentation can be browsed at
http://ludion.readthedocs.io.

Installing Ludion

Ludion is composed of:

	a centralized dashboard and a GraphQL interface, hosted on a set of
AWS serverless Resources, deployed thanks to AWS Amplify

	a set of scripts executable in a Unix shell to be installed on the
connected Resources to connect to this centralized dashboard.

Current source is available on Github, use the following command to retrieve
the latest stable version from the repository:

$ git clone https://github.com/samkos/ludion.git

Installing Ludion Centralized Services

Ludion relies on the following serverless AWS Components:

	4 DynamoDB databases

	AWS SES to send mails,

	Cognito user pool to handle authentication of users
that wish to connect to the website.

	AWS Amplify to deploy the dashboard and its
corresponding GraphQL interface via AWS Appsync

Based on a Cloud Formation script, Ludion should be
straightforward to deploy on AWS Cloud. We are still working on a
fully automated installation, learning at the same time how to master
Cloud Formation for this case.

We are presenting here a semi-automated installation using shell
scripts and some amplify command that can not be scripted yet.

Prerequisites

This installation supposes that the current user

	has created an account on AWS

	has set up the AWS Email Service, SES in order to be able to send
a mail from AWS

and that he installed on a local machine

	the aws cli (based on python)

	a recent version of nodeJS

	aws amplify (version>=4.32.1)

Deployment of the Dashboard in AWS cloud:

Let’s deploy a version of Ludion that we will tag prod. Here are reproduced
below the steps to install the centralized dashboard of Ludion built on
serverless AWS components. At this stage, this steps are either automated either
still manual. For the manual parts, accepting all the default choices is
only required.

1. Clone the latest stable version of Ludion from Github:

$ git clone https://github.com/samkos/ludion.git LUDION_TEST

2. Initialize the amplify environment

$ cd LUDION_TEST/ludion
$ bash ../install/amplify_init.sh test

Note: It is recommended to run this command from the root of your app directory

For more information on AWS Profiles, see:
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

Adding backend environment test to AWS Amplify Console app: d26x5q23er3ls4
⠴ Initializing project in the cloud...

CREATE_IN_PROGRESS UnauthRole AWS::IAM::Role Thu Nov 12 2020 15:30:08 GMT+0300 (Arabian Standard Time)
CREATE_IN_PROGRESS AuthRole AWS::IAM::Role Thu Nov 12 2020 15:30:08 GMT+0300 (Arabian Standard Time)
CREATE_IN_PROGRESS amplify-ludion-test-152955 AWS::CloudFormation::Stack Thu Nov 12 2020 15:30:03 GMT+0300 (Arabian Standard Time) User Initiated
⠼ Initializing project in the cloud...

...

✔ Successfully created initial AWS cloud resources for deployments.
✔ Initialized provider successfully.
✔ All resources are updated in the cloud

Initialized your environment successfully.

Your project has been successfully initialized and connected to the cloud!

Some next steps:
"amplify status" will show you what you've added already and if it's locally configured or deployed
"amplify add <category>" will allow you to add features like user login or a backend API
"amplify push" will build all your local backend resources and provision it in the cloud
"amplify console" to open the Amplify Console and view your project status
"amplify publish" will build all your local backend and frontend resources (if you have hosting category added) and provision it in the cloud

Pro tip:
Try "amplify add api" to create a backend API and then "amplify publish" to deploy everything

3. Add the GraphQL API, providing the model schema from amplify_schema/schema.graphql and setting the expiration time of the API key to 365 days not to have to change it too often.

$ amplify add api

[image: _images/amplifyAddApi.png]
4. Link to an authentication via cognito user pool

$ amplify add auth

[image: _images/amplifyAddAuth.png]
5. push the environment to the cloud

$ bash ../install/amplify_push.sh

[image: _images/amplifyPush1.png]
…
Updating resources in the cloud. This may take a few minutes…
…

[image: _images/amplifyPush2.png]
6. create the website locally

$ npm install

[image: _images/npmInstall.png]
7. preparing the hosting place for the dashboard in the cloud

$ amplify hosting add

[image: _images/amplifyHostingAdd.png]
8. pushing it to the cloud

$ amplify publish

[image: _images/amplifyPublish1.png]
continuing

[image: _images/amplifyPublish2.png]
continuing

[image: _images/amplifyPublish3.png]
9. Installing Ludion local components

$ bash ../install/ludion_cli_configure.sh

At this point the ludion cli unix commands should be fully configured in
the ../API/unix/ directory. Adding this
directory to PATH variable completes the installation of
Ludion

Ludion’s API

At this stage, Ludion API is still under development. For now, its public
API is only available as Unix commands and NodeJS, Python and Dart
languages are expected to be supported in the near future.

Currently under development and test, the following Unix commands are
planned to be released with the first stable release of ludion expected
by November 2020:

	registerService, to register a new service,

	getService, to get details about a service already deployed,

	updateService, to update values relative to a service expected to
be published on Ludion’s dashboard,

	listServices, to list all available services,

	setServiceTrigger, to establish a graphical widget in the
Ludion’s dashboard in the view related to the current service and
triggers its activation to an action executed immediately in the
corresponding job

their use will be detailed here.

registerService

	Purpose:

	register a service in Ludion

Usage:

registerService.js --service [serviceName] --instance [instanceName]

Options:

--version Show version number [boolean]
-s, --service Name of the service [required]
-i, --instance Name of the instance [required]
-h, --help Show help [boolean]
-u, --user given user | all [ADMIN ONLY]
-Z, --not-admin act as regular user, abolish admin privileges [ADMIN ONLY]
-e, --endpoint Endpoint
-d, --debug Adds debug trace
-j, --job job #

Example:

registerService.js -s Jupyter -i myBook

 -> launch a Jupyter note book service. It will appear in the dashboard
 as the instance *myBook* of the service *Jupyter*.

getService

	Purpose:

	get current status and parameters for a given service registered in Ludion

Usage:

getService --service <serviceName> --instance <instanceName>
 [--parameter param1[,param2,..] | --all-parameters]

Options:

--version Show version number [boolean]
-s, --service Name of the service
-i, --instance Name of the instance
-h, --help Show help [boolean]
-u, --user given user | all [ADMIN ONLY]
-Z, --not-admin act as regular user, abolish admin privileges [ADMIN ONLY]
-d, --debug Adds debug trace
-a, --all-parameters returns the value of all parameters
-p, --parameter return the value of parameter listed

Examples:

getService.js -s Jupyter -i myBook -> returns the current status of the instance *myBook*
 of the service *Jupyter*

getService.js -s Jupyter -i myBook -a -> returns all parameter of the instance *myBook*
 of the service *Jupyter*

updateService

	Purpose:

	update status and/or parameters for a given service registered in Ludion

Usage:

updateService --service <serviceName> --instance <instanceName>
 [--param1 value1 [--param2 value2 ...]]

Options:

--version Show version number [boolean]
-s, --service Name of the service
-i, --instance Name of the instance
-h, --help Show help [boolean]
-u, --user given user | all [ADMIN ONLY]
-Z, --not-admin act as regular user, abolish admin privileges [ADMIN ONLY]
-d, --debug Adds debug trace

Examples:

updateService.js -s Jupyter -i myBook -x 1 -y 2
-> set to 1 and 2 the resepctive parameters x and y of a
 the instance *myBook* of the service *Jupyter*

listServices

	Purpose:

	list services registered in Ludion

Usage:
::
listServices.js [–long] [–json]

[–service <serviceName>] [–instance <instanceName>]

Options:

--version Show version number [boolean]
-s, --service Name of the service
-i, --instance Name of the instance
-h, --help Show help [boolean]
-u, --user given user | all [ADMIN ONLY]
-Z, --not-admin act as regular user, abolish admin privileges [ADMIN ONLY]
-l, --long long format
-j, --json json format
-d, --debug Adds debug trace

Examples:

listServices.js -u johndoe -> list all services belonging to user johndoe

setServiceTrigger

	Purpose:

	connect a widget of a service in Ludion to a local script

Usage:

setServiceTrigger --service <serviceName> --instance <instanceName>
 --widget <widget_type> --label xxx --calls <script>

Options:

--version Show version number [boolean]
-s, --service Name of the service
-i, --instance Name of the instance
-h, --help Show help [boolean]
-u, --user given user | all [ADMIN ONLY]
-Z, --not-admin act as regular user, abolish admin privileges [ADMIN ONLY]
-w, --widget Type of widget to add
-l, --label Widget configuration parameters
-c, --calls Absolute path to script to trigger
-d, --debug Adds debug trace

Examples:

setServiceTrigger.js -s Jupyter -i -> a click on Button "Save me"
myBook --widget Button --label "Save me" triggers a call to run_save.sh
--calls run_save.sh

Typical use case: spawning a Jupyter Notebook

Let’s take the example of a Jupyter Notebook to be deployed from a
node of a cluster named Ibex. Let’s assume that we are already
logged in on a node of this cluster, Ibex_000xxx and have checked
for the first port Port_nnn available and started a Jupyter Notebook
server responding on this port. We also eventually set up a random
password Password_yyy to secure access to the Notebook.

The fist step consists in registering Jupyter Notebook as the instance
example of the service we name JupyterNotebook:

$ registerService --service JupyterNotebook
 --instance example \
 --endpoint http://Ibex_000xxx:Port_nnn
 --password Password_yyy
service JupyterNotebook:example registered

In the cloud, this newly registered service adds a new line in Ludion
centralized database, and triggers the update of any browser pointing to
Ludion’s Dashboad showing that a service JupyterNotebook is now ready
for the user to access at the address http://Ibex_000xxx:Port_nnn that
appears as a clickable link using the password Password_yyy
displayed with all other parameters of the service when clicking on
the service.

[image: _images/dashboardView.png]
Once the service is registered, any parameter can be updated thanks to the
following command:

$ updateService --service JupyterNotebook
 --instance example
 --status RUNNING
 --step step_0.1
service JupyterNotebook:example updated successfully

These parameters are immediately updated in the centralized database and on the
Ludion dashboard.

One can also retrieve given parameters of a given service
with the command:

$ getService --service JupyterNotebook
 --instance example
 --parameters "endpoint,status,login,password,x1"
{ service : "JupyterNotebook",
 instance : "example",
 endpoint : "Ibex_000123:2030",
 status : "RUNNING"
 login : "JupyterNotebook",
 password : "Password_yyy"
}

More briefly, this command can be called with no parameter to get
only the status of the service:

$ getService --service JupyterNotebook
 --instance example
RUNNING

Or, to get all parameters with –all-parameters options

$ getService --service JupyterNotebook
 --instance example
 --all-parameters
{ service : "JupyterNotebook",
 instance : "example",
 id : "JupyterNotebook_example_1141442334333311",
 description: "Jupyter service",
 user : "user_login",
 machine : "Ibex",
 endpoint : "Ibex_000123:2030",
 status : "COMPLETE",
 step : "step_0.1",
 password : "Password_yyy",
 createdAt : "2020-11-11 14:00:00",
 updatedAt : "2020-11-11 14:10:410",
 jobid " "012121544"
}

Index

 _static/up.png

_images/amplifyPublish3.png
Dt D Ak
4478 build/static/js/26.a38ab3f4. chunk.
3348 build/static/js/20.a12baefe. chunk.js

The project was built assuming it is hosted at /.
[You can control this with the homepage field in your package.json.

[The build folder is ready to be deployed.
You may serve it with a static server:

npn install -g serve
serve -s build

Find out more about deployment here:
bit.ly/CRA-deploy

|- zipping artifacts completed.

|- Deployment
https://test |amplifyapp. com

_images/amplifyPush1.png
v Successfully pulled backend environment test from the cloud.
Current Environment: test

| Category | Resource name | Operation | Provider plugin |
| ceoeeees] o e] oo] -
| Api | ludion | Create | awscloudfornation |
| Auth | ludion39ee521b | Create | awscloudformation |

The following types do not have ‘@auth’ enabled. Consider using @auth with @model
- Service
Learn more about Gauth here: https://docs.anplify.aws/cli/graphql-transformer/directives#auth

GraphoL schema compiled successfully.
Edit your schema at /home/samy/LUDION DEV/ludion/amplify/backend/api/ludion/schema.graphal or place .graphql files in

a directory at /home/samy/LUDION DEV/ludion/amplify/backend/api/ludion/schena
Updating resources in the cloud. This may take a few minutes.

CREATE_IN_PROGRESS apiludion Avis: :CloudFormation: :Stack Thu Nov 12 2020 16:05:48 GMT+0300 (Arabi
an Standard Time)
CREATE_IN_PROGRESS authludion3900521b Avis: :CloudFormation: :Stack Thu Nov 12 2020 16:05:48 GMT+0300 (Arabi

an Standard Time)

_images/amplifyPublish1.png
|» Successfully pulled backend environment test from the cloud.
[Current Environment: test

Category | Resource name | Operation | Provider plugin

|
|
Hosting	amplifyhosting	Create	awscloudformation
Api	ludion	No Change	awscloudformation
Auth	ludion39e0521b	No Change	awscloudformation
>

Are you sure you want to continue? Yes
Updating resources in the cloud. This may take a few minutes...

:CloudFormation: :

UPDATE IN_PROGRESS authludion396e521b A
[tandard Time)

UPDATE_IN PROGRESS amplify-ludion-test-152955 AWS: :CloudFormation::Stack Thu Nov 12 2020 16:25:46 GHT+0300 (Arabian S
tandard Tine) User Initiated

: Updating resources in the cloud. This may take a few minutes...

tack Thu Nov 12 2020 16:25:51 GMT+@300 (Arabian S|

[CREATE IN_PROGRESS hostingamplifyhosting AWS: :CloudFormation::Stack Thu Nov 12 2020 16:25:52 GMT+0300 (Arabian Standa
rd Time) Resource creation Initiated

UPDATE COMPLETE authludion3900521b AWS::CloudFormation
rd Time)

UPDATE IN PROGRESS apiludion s
rd Time)

tack Thu Nov 12 2020 16:25:52 GMT+3060 (Arabian Standa

:CloudFormation: :

tack Thu Nov 12 2020 16:25:52 GMT+300 (Arabian Standa

_images/amplifyPublish2.png
|- ALl resources are updated in the cloud

Publish started for amplifyhosting

> udion@e. 1.0 build /home/samy/LUDION DEV/ludion
> react-scripts build

creating an optimized production build...
Jcompited with warnings.

“from date’ is assigned a value but never used
‘scalew’ is assigned a value but never used
‘scaleh’ is assigned a value but never used

'OIL_FORM' is defined but never used
'OIL_RUNS' is defined but never used

“target’ is assigned a value but never used
“from date’ is assigned a value but never used
‘attempt’ is assigned a value but never used

Line 30:
Line 30:

Search for the keywords to learn more about each warning.
ITo ignore, add // eslint-disable-next-line to the line before.

File sizes after gzip:

276.23 KB build/static/js/3.367bebla.chunk. js
24.98 KB build/static/js/34.459a9476. chunk.
13.33 KB build/static/js/8.54d594ce. chunk. js
12.04 KB build/static/js/4.bge58e14.chunk. js
8.44 KB build/static/is/main.aabd4f04.chunk.is

s

_images/npmInstall.png
Jadded 2039 packages from 1416 contributors and audited 2046 packages in 293.2565

81 packages are looking for funding
run “npm fund' for details

found 6 vulnerabilities (4 low, 2 high)
run “npm audit fix' to fix them, or ‘npm audit’ for details

_static/ajax-loader.gif

_images/amplifyPush2.png
CREATE_COMPLETE apiludion AWS::CloudFormation::Stack Thu Nov 12 2026 16:68:27 GMT+0836@ (Arabian Standard Time)
Updating resources in the cloud. This may take a few minutes.

:Stack Thu Nov 12 2020 16:08:31 GM

UPDATE_COMPLETE amplify-ludion-test-152955 AWS::CloudFormatior
T+0300 (Arabian Standard Time)

UPDATE COMPLETE_CLEANUP_IN PROGRESS amplify-ludion-test-152955 AWS::CloudFormation::Stack Thu Nov 12 2620 16:08:30 GM
T+0300 (Arabian Standard Time)

+ Generated GraphQL operations successfully and saved at src/graphgl

+ AlL resources are updated in the cloud

GraphQL endpoint: https
GraphQL APT KEY: da2-hxysel

_images/dashboardView.png
FORECAST

FORECAST

FORECAST

Service Name and Instance Name
Link to access the service

List of Current services for user kortass .

FriSep 11 WORKFLOW_COMPLETE
Thu Sep 10 WORKFLOW_COMPLETE
WORKFLORgCONPLETE

Last Updated status and step of the service

MG TLVEAV U Lur Tvivee 1IvE YD iuiu

_static/comment-bright.png

_images/amplifyAddApi.png
? Please select from one of the below mentioned services: GraphQL

? Provide API name: Ludion

7 Choose the default authorization type for the API APT key

? Enter a description for the API key: Ludion-test

7 After how many days from now the API key should expire (1-365): 365

7 Do you want to configure advanced settings for the GraphQL API No, I an done.

7 Do you have an annotated GraphQL schema? Yes

7 Provide your schema file path: anplify schema/schena.graphql

The following types do not have 'Gauth’ enabled. Consider using auth with @nodel
- service

Learn more about @auth here: https://docs.amplify.aws/cli/graphql-transformer/directives#auth

GraphoL schema compiled successfully.

Edit your schema at /home/samy/LUDION DEV/ludion/amplify/backend/api/ludion/schema.graphgl or place .graphgl files in
a directory at /home/samy/LUDION DEV/ludion/amplify/backend/api/ludion/schema
successfully added resource ludion locally

Some next steps:
"anplify push” will build all your local backend resources and provision it in the cloud

“anplify publish” will build all your local backend and frontend resources (if you have hosting category added) and p
rovision it in the cloud

_images/amplifyAddAuth.png
Using service: Cognito, provided by: awscloudformation
The current configured provider is Amazon Cognito.

Do you want to use the default authentication and security configuration? Default configuration
warning: you will not be able to edit these selections.

How do you want users to be able to sign in? Username

Do you want to configure advanced settings? No, I am done.

Isuccessfully added resource ludion3900521b locally

|some next steps:
"anplify push” will build all your local backend resources and provision it in the cloud

anplify publish* will build all your local backend and frontend resources (if you have hosting category added) and f
rovision it in the cloud

_images/Ludion.png
Authenticate Proxify
Inventory Report

+ Catalog of Resource (updated by process from
running job)
« Website to connect and interact with running jobs

registerService
getService
updateService
listServices
setServiceTrigger

CEE0

o

Cluster User's Laptop

Rl e s

HPC Supercomputer

User's Workstation

_images/amplifyHostingAdd.png
7 Select the plugin module to execute Hosting with Amplify Console (Managed hosting with custom domains, Continuous c
eploynent)

? Choose a type Manual deployment

You can now publish your app using the following command:

Command: amplify publish

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to Ludion’s documentation!

 		
 What is Ludion?

 		
 Features

 		
 Installation

 		
 Requirements

 		
 Distribution

 		
 Installing Ludion

 		
 Installing Ludion Centralized Services

 		
 Prerequisites

 		
 Deployment of the Dashboard in AWS cloud:

 		
 Ludion’s API

 		
 registerService

 		
 getService

 		
 updateService

 		
 listServices

 		
 setServiceTrigger

 		
 Typical use case: spawning a Jupyter Notebook

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

