
Ludion Documentation
Release 0.1.0

Samuel KORTAS

Nov 22, 2020

User Documentation

1 What is Ludion? 3
1.1 Features . 3

2 Installation 5
2.1 Requirements . 5
2.2 Distribution . 5
2.3 Installing Ludion . 5
2.4 Installing Ludion Centralized Services . 6

2.4.1 Prerequisites . 6
2.4.2 Deployment of the Dashboard in AWS cloud: . 6

3 Ludion’s API 11
3.1 registerService . 11
3.2 getService . 12
3.3 updateService . 12
3.4 listServices . 13
3.5 setServiceTrigger . 13

4 Typical use case: spawning a Jupyter Notebook 15

Bibliography 19

i

ii

Ludion Documentation, Release 0.1.0

Ludion is the French word for “Cartesian Diver” a classic science experiment demonstrating the principle of
Archimedes’principle. It consists of a diver trapped in a water bottle traveling down when a pressure is applied at
the top of the enclosure and back up when it is released.

The movement of this diver portrays well the purpose of Ludion this framework which goal is to spread valuable
information back and forth from HPC Resources to an easy to use web interface hosted in the AWS Cloud and vice
versa.

Although all technical information can be found on the current website, the following [Article] might be of interest to
understand the context of this work as it captures the motivations of Ludion’s development, its functional architecture,
some detail of implementation as well as 10 use cases partially deployed at KAUST Supercomputing Laboratory.

User Documentation 1

Ludion Documentation, Release 0.1.0

2 User Documentation

CHAPTER 1

What is Ludion?

Developped by the KAUST Supercomputing Laboratory (KSL), Ludion is a service-oriented hybrid architecture, well-
adapted to launch, monitor and steer interactive services spawned either on on-premise HPC resources, on user laptop
and workstation or in the Cloud. Based on AWS serverless components, requiring no special priviledges to be de-
ployed, it consists in a catalog of services and a dashboard hosted in the Cloud and a set of commands to install on the
Resources to cover. From a running job, a user can register and publish his new service and any relevant data related
on a centralized dashboard.

Developed by the KAUST Supercomputing Laboratory, Ludion is released as an Open Source Software under BSD
Licence. It is available at http://github.com/samkos/ludion

1.1 Features

Ludion allows a user to:

• “publish” his own service via a centralized web interface and API. This service can be hosted either on-premise
HPC, on his local workstation or in the cloud.

• dynamically update any information judged of interest about the published service

• make user-defined widget appear on the website in the view related to a given service. When clicked-on or filled
and submitted, these widget trigger immediate action from the service hosted on resource.

3

http://github.com/samkos/ludion

Ludion Documentation, Release 0.1.0

4 Chapter 1. What is Ludion?

CHAPTER 2

Installation

2.1 Requirements

Ludion does not require any super priviledge. It can be installed by a regular user as long as he possess an AWS
account to install Ludion centralized services.

2.2 Distribution

Ludion is an open-source project distributed under the BSD 2-Clause “Simplified” License which means that many
possibilities are offered to the end user including the fact to embed Ludion in one own software.

Its stable production branch is available via github at https://github.com/samkos/ludion where its latest production and
development branch can be found

The most recently updated documentation can be browsed at http://ludion.readthedocs.io.

2.3 Installing Ludion

Ludion is composed of:

• a centralized dashboard and a GraphQL interface, hosted on a set of AWS serverless Resources, deployed thanks
to AWS Amplify

• a set of scripts executable in a Unix shell to be installed on the connected Resources to connect to this centralized
dashboard.

Current source is available on Github, use the following command to retrieve the latest stable version from the reposi-
tory:

$ git clone https://github.com/samkos/ludion.git

5

https://github.com/samkos/ludion
http://ludion.readthedocs.io

Ludion Documentation, Release 0.1.0

2.4 Installing Ludion Centralized Services

Ludion relies on the following serverless AWS Components:

• 4 DynamoDB databases

• AWS SES to send mails,

• Cognito user pool to handle authentication of users that wish to connect to the website.

• AWS Amplify to deploy the dashboard and its corresponding GraphQL interface via AWS Appsync

Based on a Cloud Formation script, Ludion should be straightforward to deploy on AWS Cloud. We are still working
on a fully automated installation, learning at the same time how to master Cloud Formation for this case.

We are presenting here a semi-automated installation using shell scripts and some amplify command that can not be
scripted yet.

2.4.1 Prerequisites

This installation supposes that the current user

• has created an account on AWS

• has set up the AWS Email Service, SES in order to be able to send a mail from AWS

and that he installed on a local machine

• the aws cli (based on python)

• a recent version of nodeJS

• aws amplify (version>=4.32.1)

2.4.2 Deployment of the Dashboard in AWS cloud:

Let’s deploy a version of Ludion that we will tag prod. Here are reproduced below the steps to install the centralized
dashboard of Ludion built on serverless AWS components. At this stage, this steps are either automated either still
manual. For the manual parts, accepting all the default choices is only required.

1. Clone the latest stable version of Ludion from Github:

$ git clone https://github.com/samkos/ludion.git LUDION_TEST

2. Initialize the amplify environment

$ cd LUDION_TEST/ludion
$ bash ../install/amplify_init.sh test

Note: It is recommended to run this command from the root of your app directory

For more information on AWS Profiles, see:
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

Adding backend environment test to AWS Amplify Console app: d26x5q23er3ls4
Initializing project in the cloud...

CREATE_IN_PROGRESS UnauthRole AWS::IAM::Role Thu Nov 12
→˓2020 15:30:08 GMT+0300 (Arabian Standard Time)

(continues on next page)

6 Chapter 2. Installation

Ludion Documentation, Release 0.1.0

(continued from previous page)

CREATE_IN_PROGRESS AuthRole AWS::IAM::Role Thu Nov 12
→˓2020 15:30:08 GMT+0300 (Arabian Standard Time)
CREATE_IN_PROGRESS amplify-ludion-test-152955 AWS::CloudFormation::Stack Thu Nov 12
→˓2020 15:30:03 GMT+0300 (Arabian Standard Time) User Initiated
Initializing project in the cloud...

...

XXX Successfully created initial AWS cloud resources for deployments.
XXX Initialized provider successfully.
XXX All resources are updated in the cloud

Initialized your environment successfully.

Your project has been successfully initialized and connected to the cloud!

Some next steps:
"amplify status" will show you what you've added already and if it's locally
→˓configured or deployed
"amplify add <category>" will allow you to add features like user login or a backend
→˓API
"amplify push" will build all your local backend resources and provision it in the
→˓cloud
"amplify console" to open the Amplify Console and view your project status
"amplify publish" will build all your local backend and frontend resources (if you
→˓have hosting category added) and provision it in the cloud

Pro tip:
Try "amplify add api" to create a backend API and then "amplify publish" to deploy
→˓everything

3. Add the GraphQL API, providing the model schema from amplify_schema/schema.graphql and setting the expira-
tion time of the API key to 365 days not to have to change it too often.

$ amplify add api

2.4. Installing Ludion Centralized Services 7

Ludion Documentation, Release 0.1.0

4. Link to an authentication via cognito user pool

$ amplify add auth

5. push the environment to the cloud

$ bash ../install/amplify_push.sh

. . . Updating resources in the cloud. This may take a few minutes.

6. create the website locally

$ npm install

8 Chapter 2. Installation

Ludion Documentation, Release 0.1.0

7. preparing the hosting place for the dashboard in the cloud

$ amplify hosting add

8. pushing it to the cloud

$ amplify publish

continuing

2.4. Installing Ludion Centralized Services 9

Ludion Documentation, Release 0.1.0

continuing

9. Installing Ludion local components

$ bash ../install/ludion_cli_configure.sh

At this point the ludion cli unix commands should be fully configured in the ../API/unix/ directory. Adding this
directory to PATH variable completes the installation of Ludion

10 Chapter 2. Installation

CHAPTER 3

Ludion’s API

At this stage, Ludion API is still under development. For now, its public API is only available as Unix commands and
NodeJS, Python and Dart languages are expected to be supported in the near future.

Currently under development and test, the following Unix commands are planned to be released with the first stable
release of ludion expected by November 2020:

• registerService, to register a new service,

• getService, to get details about a service already deployed,

• updateService, to update values relative to a service expected to be published on Ludion’s dashboard,

• listServices, to list all available services,

• setServiceTrigger, to establish a graphical widget in the Ludion’s dashboard in the view related to the current
service and triggers its activation to an action executed immediately in the corresponding job

their use will be detailed here.

3.1 registerService

Purpose: register a service in Ludion

Usage:

registerService.js --service [serviceName] --instance [instanceName]

Options:

--version Show version number [boolean]
-s, --service Name of the service [required]
-i, --instance Name of the instance [required]
-h, --help Show help [boolean]
-u, --user given user | all [ADMIN ONLY]
-Z, --not-admin act as regular user, abolish admin privileges [ADMIN ONLY]

(continues on next page)

11

Ludion Documentation, Release 0.1.0

(continued from previous page)

-e, --endpoint Endpoint
-d, --debug Adds debug trace
-j, --job job #

Example:

registerService.js -s Jupyter -i myBook

-> launch a Jupyter note book service. It will appear in the dashboard
as the instance *myBook* of the service *Jupyter*.

3.2 getService

Purpose: get current status and parameters for a given service registered in Ludion

Usage:

getService --service <serviceName> --instance <instanceName>
[--parameter param1[,param2,..] | --all-parameters]

Options:

--version Show version number [boolean]
-s, --service Name of the service
-i, --instance Name of the instance
-h, --help Show help [boolean]
-u, --user given user | all [ADMIN ONLY]
-Z, --not-admin act as regular user, abolish admin privileges [ADMIN ONLY]
-d, --debug Adds debug trace
-a, --all-parameters returns the value of all parameters
-p, --parameter return the value of parameter listed

Examples:

getService.js -s Jupyter -i myBook -> returns the current status of the
→˓instance *myBook*

of the service *Jupyter*

getService.js -s Jupyter -i myBook -a -> returns all parameter of the instance
→˓*myBook*

of the service *Jupyter*

3.3 updateService

Purpose: update status and/or parameters for a given service registered in Ludion

Usage:

updateService --service <serviceName> --instance <instanceName>
[--param1 value1 [--param2 value2 ...]]

Options:

12 Chapter 3. Ludion’s API

Ludion Documentation, Release 0.1.0

--version Show version number [boolean]
-s, --service Name of the service
-i, --instance Name of the instance
-h, --help Show help [boolean]
-u, --user given user | all [ADMIN ONLY]
-Z, --not-admin act as regular user, abolish admin privileges [ADMIN ONLY]
-d, --debug Adds debug trace

Examples:

updateService.js -s Jupyter -i myBook -x 1 -y 2
-> set to 1 and 2 the resepctive parameters x and y of a

the instance *myBook* of the service *Jupyter*

3.4 listServices

Purpose: list services registered in Ludion

Usage: :: listServices.js [–long] [–json]

[–service <serviceName>] [–instance <instanceName>]

Options:

--version Show version number [boolean]
-s, --service Name of the service
-i, --instance Name of the instance
-h, --help Show help [boolean]
-u, --user given user | all [ADMIN ONLY]
-Z, --not-admin act as regular user, abolish admin privileges [ADMIN ONLY]
-l, --long long format
-j, --json json format
-d, --debug Adds debug trace

Examples:

listServices.js -u johndoe -> list all services belonging to user johndoe

3.5 setServiceTrigger

Purpose: connect a widget of a service in Ludion to a local script

Usage:

setServiceTrigger --service <serviceName> --instance <instanceName>
--widget <widget_type> --label xxx --calls <script>

Options:

--version Show version number [boolean]
-s, --service Name of the service
-i, --instance Name of the instance
-h, --help Show help [boolean]

(continues on next page)

3.4. listServices 13

Ludion Documentation, Release 0.1.0

(continued from previous page)

-u, --user given user | all [ADMIN ONLY]
-Z, --not-admin act as regular user, abolish admin privileges [ADMIN ONLY]
-w, --widget Type of widget to add
-l, --label Widget configuration parameters
-c, --calls Absolute path to script to trigger
-d, --debug Adds debug trace

Examples:

setServiceTrigger.js -s Jupyter -i -> a click on Button "Save me"
myBook --widget Button --label "Save me" triggers a call to run_save.sh
--calls run_save.sh

14 Chapter 3. Ludion’s API

CHAPTER 4

Typical use case: spawning a Jupyter Notebook

Let’s take the example of a Jupyter Notebook to be deployed from a node of a cluster named Ibex. Let’s assume that we
are already logged in on a node of this cluster, Ibex_000xxx and have checked for the first port Port_nnn available and
started a Jupyter Notebook server responding on this port. We also eventually set up a random password Password_yyy
to secure access to the Notebook.

The fist step consists in registering Jupyter Notebook as the instance example of the service we name JupyterNotebook:

$ registerService --service JupyterNotebook
--instance example \
--endpoint http://Ibex_000xxx:Port_nnn
--password Password_yyy

service JupyterNotebook:example registered

In the cloud, this newly registered service adds a new line in Ludion centralized database, and triggers the update
of any browser pointing to Ludion’s Dashboad showing that a service JupyterNotebook is now ready for the user to
access at the address http://Ibex_000xxx:Port_nnn that appears as a clickable link using the password Password_yyy
displayed with all other parameters of the service when clicking on the service.

15

Ludion Documentation, Release 0.1.0

Once the service is registered, any parameter can be updated thanks to the following command:

$ updateService --service JupyterNotebook
--instance example
--status RUNNING
--step step_0.1

service JupyterNotebook:example updated successfully

These parameters are immediately updated in the centralized database and on the Ludion dashboard.

One can also retrieve given parameters of a given service with the command:

$ getService --service JupyterNotebook
--instance example
--parameters "endpoint,status,login,password,x1"

{ service : "JupyterNotebook",
instance : "example",
endpoint : "Ibex_000123:2030",
status : "RUNNING"
login : "JupyterNotebook",
password : "Password_yyy"

}

More briefly, this command can be called with no parameter to get only the status of the service:

$ getService --service JupyterNotebook
--instance example

RUNNING

Or, to get all parameters with –all-parameters options

16 Chapter 4. Typical use case: spawning a Jupyter Notebook

Ludion Documentation, Release 0.1.0

$ getService --service JupyterNotebook
--instance example
--all-parameters

{ service : "JupyterNotebook",
instance : "example",
id : "JupyterNotebook_example_1141442334333311",
description: "Jupyter service",
user : "user_login",
machine : "Ibex",
endpoint : "Ibex_000123:2030",
status : "COMPLETE",
step : "step_0.1",
password : "Password_yyy",
createdAt : "2020-11-11 14:00:00",
updatedAt : "2020-11-11 14:10:410",
jobid " "012121544"

}

17

Ludion Documentation, Release 0.1.0

18 Chapter 4. Typical use case: spawning a Jupyter Notebook

Bibliography

[Article] Towards an HPC Service Oriented Hybrid Cloud Architecture Designed for Interactive Workflows, Samuel
KORTAS & Moshin SHAIKH, submitted in September 2020, available on request.

19

	What is Ludion?
	Features

	Installation
	Requirements
	Distribution
	Installing Ludion
	Installing Ludion Centralized Services
	Prerequisites
	Deployment of the Dashboard in AWS cloud:

	Ludion’s API
	registerService
	getService
	updateService
	listServices
	setServiceTrigger

	Typical use case: spawning a Jupyter Notebook
	Bibliography

